
Client Net Server

Client App Network Server App

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio). 

We have already seen that TCP connection starts up in slow start mode, geometrically increasing the congestion window (cwnd)
until it crosses the slow start threshold (ssthresh). Once cwnd is greater  that ssthresh, TCP enters the congestion avoidance
mode of operation. In this mode, the primary objective is to maintain high throughput without causing congestion. If TCP detects
segment loss, it assumes that congestion has been detected over the internet. As a corrective action, TCP reduces its data flow
rate by reducing cwnd. After reducing cwnd, TCP goes back to slow start. 

Server
Socket

create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In this
mode, the socket does not attempt to establish a TCP
connection. The socket listens for TCP connection
request from clients

Listen Socket transitions to the Listen state

Server socket initialization  

Server awaits client socket connections.

Client
Socket

create Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization  

Socket initialization  

Active_Open Application wishes to communicate with a destination
server using a TCP connection. The application opens a
socket for the connection in active mode. In this mode, a
TCP connection will be attempted with the server.
Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP
uses port 80.

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0 

Client sets the SYN bit in the TCP header to request a
TCP connection. The sequence number field is set to 0.
Since the SYN bit is set, this sequence number is used
as the initial sequence number

SYN Sent Socket transitions to the SYN Sent state

Client initiated three way handshake to establish a TCP
connection  



Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0 

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535 

Server sets the SYN and the ACK bits in the TCP header.
Server sends its initial sequence number as 100. Server
also sets its window to 65535 bytes. i.e. Server has buffer
space for 65535 bytes of data. Also note that the ack
sequence numer is set to 1. This signifies that the server
expects a next byte sequence number of 1

SYN Received Now the server transitions to the SYN Received state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535 

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000 

Client now acknowledges the first segment, thus
completing the three way handshake. The receive
window is set to 5000. Ack sequence number is set to
101, this means that the next expected sequence number
is 101.

Established At this point, the client assumes that the TCP connection
has been established

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000 

Server receives the TCP ACK segment

Established Now the server too moves to the Established state

cwnd = 512 bytes (1
segment) 

TCP connection begins with a congestion window size of
1 segment

ssthresh = 65535 bytes The slow start threshold starts with 64 Kbytes as the
threshold value.

TCP session begins with 'Slow Start' Click on the action title for a detailed description of the
TCP slow start.

Slow Start Since cwnd < ssthresh, TCP state is slow start

TCP congestion window grows from 512 bytes (1 segment) to
64947 

TCP congestion window grows at the start of the session
if no segment losses are detected during slow start).
During slow start the congestion window was being
incremented by 1 segment for every TCP Ack from the
other end.

Data Client Application sends data for transmission over the
TCP Socket

TCP Segment
seq_num = 100000,
len = 512 

Data is split into TCP Segments. The segments are sent
over the Internet

About to exit slow start  

Slow start  

http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start
http://bit.ly/slow-start


Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

TCP Segment
seq_num = 100512,
len = 512 

TCP Segment
seq_num = 100000,
len = 512 

TCP Segment
seq_num = 100512,
len = 512 

Data Data is forwarded to the server side application

ACK
ack_num = 101024,
window = 80000 

Client acknowledges the last block and also signals an
increase in receiver window to 80000

ACK
ack_num = 101024,
window = 80000 

cwnd = 64947 + 512 =
65459 

Since TCP is in slow start, every ack leads to the window
growing by one segment.

Congestion
Avoidance 

At this point cwnd (=65459) > ssthresh (=65535) thus
TCP changes state to congestion avoidance. Now TCP
window growth will be much more conservative. If no
segment or ack losses are detected, the congestion
window will grow no more than one segment per
roundtrip. (Compare this with geometric growth of 1
segment per TCP ack in slow start)

Data More data is received from the client application

TCP Segment
seq_num = 101024,
len = 512 

Client data is split into TCP segments

TCP Segment
seq_num = 101536,
len = 512 

TCP Segment
seq_num = 101024,
len = 512 

TCP Segment
seq_num = 101536,
len = 512 

Data Data is forwarded to the server application

ACK
ack_num = 102048,
window = 80000 

Congestion Avoidance  



Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

ACK
ack_num = 102048,
window = 80000 

cwnd is incremented using the formula: cwnd = cwnd +
(segment_size  segment_size) / cwnd) 

cwnd = 65459 + [(512 * 512)
/ 65459] = 65459 + 4 =

65463 

Now TCP is in congestion avoidance mode, so the TCP
window advances very slowly. Here the window
increased by only 4 bytes.

Data Data to be sent to server

TCP Segment
seq_num = 102048,
len = 512 

TCP session sends out the data as a single segment

AckTimer TCP session starts a ack timer, awaiting the TCP ack for
this segment.
Note: The above timer is started for every segment. The
timer is not shown at other places as it does not play a
role in our analysis.

TCP Segment
seq_num = 102048,
len = 512 

Some node in the Internet drops the TCP segment due to
congestion

AckTimer TCP times out for a TCP ACK from the other end. This
will be treated as a sign of congestion by TCP

ssthresh = 65463/2 =
32731 

When TCP detects congestion, it stores half of the
current congestion window in ssthresh variable. In this
case, ssthresh has been reduced from 65535 to 32731.
This signifies that TCP now has less confidence on the
network's ability to support big window sizes. Thus if the
window size falls due to congestion, rapid window size
increases will be carried out only until the window
reaches 32731. Once this lowered ssthresh value is
reached, window growth will be much slower.

A TCP segment is lost  

cwnd = 512 bytes (1
segment) 

Since current congestion has been detected by timeout,
TCP takes the drastic action of reducing the congestion
window to 1. As you can see, this will have a big impact
on the throughput.

Slow Start cwnd (=1) is now lower than ssthresh (=32731) so TCP
goes back to slow start.

TCP Segment
seq_num = 102048,
len = 512 

TCP Segment
seq_num = 102048,
len = 512 

Data Data is finally given to the server application

Back to slow start  



Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

ACK
ack_num = 102560 

ACK
ack_num = 102560 

cwnd = 512 + 512 = 1024 Since TCP is in slow start, a TCP acknowledgement
results in the window growing by one segment

TCP window continues to grow exponentially until it reaches the
ssthresh (=32731) value 

Data
size = 3072 

TCP Segment
size = 512 

Six TCP segments are transmitted in the slow start mode

TCP Segment
size = 512 

TCP Segment
size = 512 

TCP Segment
size = 512 

TCP Segment
size = 512 

TCP Segment
size = 512 

TCP Segment
size = 512 

TCP Segment
size = 512 

Data
size = 1024 

First part of the data is delivered

ACK

TCP Segment
size = 512 

TCP Segment
size = 512 

Data
size = 1024 

Second Part of the data is delivered

ACK



Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

TCP Segment
size = 512 

TCP Segment
size = 512 

Data
size = 1024 

Third Part of the data is delivered

ACK

ACK Ack for the first two segments is received

cwnd = 32730 + 512 = 33242 TCP is in slow start so the congestion window is
increased by one segment

Congestion
Avoidance 

Now cwnd (=33242") > ssthresh (=32731), thus the TCP
session moves into congestion avoidance

ACK Ack for the next two segments is received

cwnd = 33242 +
(512*512)/33242 = 33242 + 8

= 33250 

Now the TCP window is growing very slowly by
approximately 8 bytes per ack

ACK Ack for the last two segments is received

cwnd = 33250 +
(512*512)/33250 = 33250 + 8

= 33258 

Congestion window continues to advance at a slow rate

Back to congestion avoidance  

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the
TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

Close Wait Server changes state to Close Wait. In this state the
server waits for the server application to close the
connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now
waits close of TCP connection from the server end

Client to server TCP connection release  

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the connection

Server to client TCP connection release  

Client closes TCP connection  



Client Net Server

Client App Client
Socket

Network Server
Socket

Server App

Last Ack Server changes state to Last Ack. In this state the last
acknowledgement from the client will be received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last
ack has been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Close_Timer Close timer has expired. Thus the client end connection
can be closed too.

Closed 

delete

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio). 


	TCP - Transmission Control Protocol
	TCP Congestion Avoidance
	Socket initialization
	Server socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	Slow start
	About to exit slow start

	Congestion Avoidance
	A TCP segment is lost

	Back to slow start
	Back to congestion avoidance
	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release




