
TCP - Transmission Control Protocol (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Network Server App

EventStudio System Designer 6

19-May-13 11:14 (Page 1)

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

TCP (Transmission Control Protocol) provides a reliable end to end service that delivers packets over the Internet. Packets are
delivered in sequence without loss or duplication.

This sequence diagram explores following: (1) The three-way handshake to establish a TCP (2) Data transfer using the byte
oriented sequence numbers (3) Release of a TCP connection.

The TCP socket creation and deletion on the server and client is also covered.

Server
Socket

create Server Application creates a Socket

Closed The Socket is created in Closed state

seq_num = 100 Server sets the initial sequence number to 100

Passive_Open Server application has initiated a passive open. In this
mode, the socket does not attempt to establish a TCP
connection. The socket listens for TCP connection
request from clients

Listen Socket transitions to the Listen state

Server socket initialization

Server awaits client socket connections.

Client
Socket

create Client Application creates Socket

Closed The socket is created in the Closed state

seq_num = 0 Initial sequence number is set to 0

Client socket initialization

Socket initialization

Active_Open Application wishes to communicate with a destination
server using a TCP connection. The application opens a
socket for the connection in active mode. In this mode, a
TCP connection will be attempted with the server.
Typically, the client will use a well known port number to
communicate with the remote Server. For example,
HTTP uses port 80.

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

Client sets the SYN bit in the TCP header to request a
TCP connection. The sequence number field is set to 0.
Since the SYN bit is set, this sequence number is used
as the initial sequence number

SYN Sent Socket transitions to the SYN Sent state

Client initiated three way handshake to establish a
TCP connection

TCP - Transmission Control Protocol (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server

Socket
Server App

EventStudio System Designer 6

19-May-13 11:14 (Page 2)

SYN
src = Client_Port,
dst = Server_Port,
seq_num = 0

SYN TCP segment is received by the server

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Server sets the SYN and the ACK bits in the TCP
header. Server sends its initial sequence number as
100. Server also sets its window to 65535 bytes. i.e.
Server has buffer space for 65535 bytes of data. Also
note that the ack sequence numer is set to 1. This
signifies that the server expects a next byte sequence
number of 1

SYN Received Now the server transitions to the SYN Received state

SYN+ACK
src = Server_Port,
dst = Client_Port,
seq_num = 100,
ack_num = 1,
window = 65535

Client receives the "SYN+ACK" TCP segment

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Client now acknowledges the first segment, thus
completing the three way handshake. The receive
window is set to 5000. Ack sequence number is set to
101, this means that the next expected sequence
number is 101.

Established At this point, the client assumes that the TCP connection
has been established

ACK
src = Client_Port,
dst = Server_Port,
ack_num = 101,
window = 5000

Server receives the TCP ACK segment

Established Now the server too moves to the Established state

Data
size = 1024

Client application sends 1024 bytes of data to the socket

Split data into TCP
segments

This TCP connection limits TCP segments to 512 bytes,
thus the received data is split into 2 TCP segments

TCP Segment
seq_num = 1,
len = 512

The first TCP segment is sent with a sequence number
of 1. This is the sequence number for the first byte in the
segment.
(Note that unlike other protocols, TCP maintains
sequence numbers at byte level. The sequence number
field in the TCP header corresponds to the first byte in
the segment.)

TCP Segment
seq_num = 513,
len = 512

Bytes in the first TCP segment correspond to 1 to 512
sequence numbers. Thus, the second TCP segment
contains data starting with 513 sequence number

Client to server data transfer

Data transfer phase: Here a short data transfer takes place, thus TCP
slow start has little impact

TCP - Transmission Control Protocol (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server

Socket
Server App

EventStudio System Designer 6

19-May-13 11:14 (Page 3)

TCP Segment
seq_num = 1,
len = 512

TCP Segment
seq_num = 513,
len = 512

Server receives both the segments

Assemble TCP Segments Server receives two consecutive segments, thus it
assembles the segments

Data
size = 1024

Assembled Data is passed to the Server Application

ACK
ack_num = 1025

Server acknowledges the data segments with the next
expected sequence number as 1025 (TCP typically
sends an acknowledgement every two received
segments)

ACK
ack_num = 1025

Data
size = 700

Now server responds back with data for the client

Split data into TCP
segments

TCP Segment
seq_num = 101,
len = 512

TCP Segment
seq_num = 613,
len = 188

TCP Segment
seq_num = 1,
len = 512

TCP Segment
seq_num = 613,
len = 188

Client has received both the TCP segments

Assemble TCP Segments

Data
size = 700

Socket passes data to Client application

ACK
ack_num = 701

Client sends a TCP ACK with the next expected
sequence number set to 701

ACK
ack_num = 701

Server to client data transfer

TCP - Transmission Control Protocol (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Client Socket Network Server

Socket
Server App

EventStudio System Designer 6

19-May-13 11:14 (Page 4)

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the
TCP header

FIN Wait 1 Client changes state to FIN Wait 1 state

FIN Server receives the FIN

ACK Server responds back with ACK to acknowledge the FIN

Close Wait Server changes state to Close Wait. In this state the
server waits for the server application to close the
connection

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now
waits close of TCP connection from the server end

Client to server TCP connection release

Close Server application closes the TCP connection

FIN FIN is sent out to the client to close the connection

Last Ack Server changes state to Last Ack. In this state the last
acknowledgement from the client will be received

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last
ack has been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

ACK Server receives the ACK

Closed Server moves the connection to closed state

delete

Close_Timer Close timer has expired. Thus the client end connection
can be closed too.

Closed

delete

Server to client TCP connection release

Client closes TCP connection

This sequence diagram was generated with EventStudio System Designer (http://www.EventHelix.com/EventStudio).

	TCP - Transmission Control Protocol
	TCP Connection Setup and Release
	Socket initialization
	Server socket initialization
	Client socket initialization

	Client initiated three way handshake to establish a TCP connection
	Data transfer phase: Here a short data transfer takes place, thus TCP slow start has little impact
	Client to server data transfer
	Server to client data transfer

	Client closes TCP connection
	Client to server TCP connection release
	Server to client TCP connection release

